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ABSTRACT

A new interpolation method for 2× 2 symmetric second-rank

tensors is proposed. It uses a vector representation of ten-

sors using its eigenvalues and the rotation angle of the ma-

jor eigenvector with respect to a cartesian coordinate system.

These characteristics are then linearly interpolated. Although

it is not constricted to positive definite tensors, it preserves

this property for tensors with nonnegative eigenvalues. We

compare this technique with the matrix coefficient linear in-

terpolation. The experiments show that our technique im-

proves the results.

Index Terms— Interpolation, second-rank tensors, multi-

dimensional signal processing, biomedical image processing.

1. INTRODUCTION

There is an increasing interest in tensors in image process-

ing, and there is a growing number of applications for tensor

images in the medical field. For example, diffusion tensor

imaging is employed in neurology and neurosurgery [1]. In

addition, 2D strain tensor images computed from series of 2D

tagged magnetic resonance images have been used to study

the contractile function of the heart [2]. The strain tensor is

also used in elastography [3]. We note that in the last two

applications the images are generally two-dimensional with

2× 2 symmetric tensor data.

It is important to have good interpolation techniques for

tensor data. The most straightforward approach is to treat

each tensor component as an independent variable and lin-

early interpolate each of them separately. This method has

low computational cost and can be applied to any tensor. We

will call it matrix coefficient linear interpolation. However,

the tensor components are interrelated in general and this

technique does not guarantee the positive definiteness of the

interpolation between two positive definite tensors.

In the last years, some interpolation techniques that pre-

serve positive definiteness have been proposed. They ensure

that the interpolated tensors stay within the space of posi-

tive definite symmetric matrices. In [4], an affine-invariant

metric is given to this space, and two methods are proposed:

a geodesic and a rotational interpolation focusing on eigen-

values and eigendirections respectively. However, they are

computationally expensive. In [5], the tensor space is given

a log-euclidean metric, and the interpolation is viewed as

the computation of a weighted mean of the tensors. Both an

explicit and an iterative solution are given in [6]. This method

produces similar results to those of the affine-invariant ones

at a lower computational cost. In [7], geodesic-loxodromes or

paths of constant bearing are used as the interpolation paths

between two tensors. With this technique, three tensor shape

invariants are monotonically interpolated. To our knowledge,

however, there is no efficient numerical scheme to find the

geodesic-loxodromes, and a gradient descent algorithm is

used.

We propose an interpolation technique that is compu-

tationally efficient and can be applied to 2 × 2 symmetric

tensors without the restriction of positive semidefiniteness.

Our method uses the tensor eigendecomposition and a de-

fined cartesian coordinate system to describe the tensor by its

eigenvalues and the angle between the major eigenvector and

the abscissa axis of the coordinate system. It then linearly

interpolates these parameters to compute the new tensor.

Therefore, our method also produces linear angular orien-

tation change. Although this method can be employed with

arbitrary 2×2 symmetric tensors, if only positive semidefinite

tensors are used, the positive semidefiniteness is preserved in

the interpolated tensors.

This paper is structured as follows: in Section 2, our in-

terpolation method is explained. In Section 3, we show ex-

perimental results comparing matrix coefficients interpolation

with our approach and discuss them. In Section 4, some con-

clusions are drawn and future work is outlined.

2. INTERPOLATION METHOD

A symmetric second-rank tensor defined in a bidimensional

space can be expressed as a 2 × 2 matrix T =
(

a b
b c

)
where

{a, b, c} ∈ R. It has three degrees of freedom. The space of

symmetric 2 × 2 matrices is Sym2. If we make the eigen-

decomposition of T, its eigenvalues {λi, i = 1, 2} are real

numbers, and its eigenvectors {εi, i = 1, 2} are unitary and

an orthogonal base of R
2. We must note that both εi and −εi
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can be used as eigenvector, and ε2 is rotated π
2 with respect to

ε1.

If we use a cartesian orthonormal base of R
2 as coor-

dinate system, the eigenvector base can be thought as a ro-

tation of the reference system, and defined by the angle θ
between the abscissa axis and ε1. Using the convention in

Figure 1 and if ε1 = (ε1x, ε1y)T in this coordinate system,

θ = arctan(ε1y/ε1x), and the angle between ε2 and the ab-

scissa axis is θ + π
2 .

x

y

θ

ε 2

ε 1

Fig. 1. Coordinate system and the eigenvector base conven-

tion used.

Therefore, the tensor can be fully described by θ and

{λ1, λ2}. We define a mapping V(T) as:

V : Sym2 −→ D ⊂ R
3

T −→ (λ1, λ2, θ)
(1)

where λ1, λ2 and θ are the tensor T major and minor eigen-

values and rotation angle respectively. D is a subset of R
3

with λ1, λ2 ∈ R and 0 ≤ θ ≤ π.

If we have two tensors T0 and T1, our interpolation

method consists in linearly interpolating the vectors V(T0)
and V(T1) and doing the inverse mapping V−1. Then, if

we define a spatial parameter t ∈ [0, 1], the tensor T(t)
interpolated by our method is expressed as:

T(t) = V−1 ((1− t)V(T(0)) + tV(T(1))) (2)

where T(0) = T0 and T(1) = T1. The inverse mapping

V−1 returns a 2 × 2 tensor matrix T from its eigenvalues

and rotation angle θ using the expression T = R(θ)ΛR(θ)T ,

where Λ =
(

λ1 0
0 λ2

)
and R(θ) has the following expression:

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
(3)

This method has several advantages. First, the eigenval-

ues and rotation angle are linearly interpolated, so many of

the tensor invariants, expressed as a function of the eigen-

values, are also smoothly interpolated. No assumptions have

been made about the sign of the eigenvalues, and therefore

this method is not limited to positive semidefinite tensors.

A necessary and sufficient condition for a symmetric ten-

sor to be positive semidefinite is that all its eigenvalues are

nonnegative. If we have two positive semidefinite tensors A
and B, and an interpolated tensor C between them, we have:

λ1C = (1− t)λ1A + tλ1B (4)

λ2C = (1− t)λ2A + tλ2B (5)

where λiA, λiB and λiC (i = 1, 2) are the eigenvalues of

tensors A, B and C respectively. Given that t ∈ [0, 1],
(1 − t) ∈ [0, 1], that λiA ≥ 0 and λiB ≥ 0 by A and B
positive semidefiniteness property and that λ1C and λ2C are

linear functions of t, we can guarantee that λiC ≥ 0, i = 1, 2,

that is, C is positive semidefinite. This means that this

method preserves positive semidefiniteness if it is used with

tensors whose eigenvalues are nonnegative. Examples of ten-

sors of this kind are diffusion tensors [1] and local structure

tensors [8], among others.

Our method can also be used for bilinear interpolation. If

we have a spatial rectangle parameterized by tx ∈ [0, 1] and

ty ∈ [0, 1] along the x- and y-axis respectively, and the tensor

field T(tx, ty) is known at the corners, then:

T(tx, ty) = V−1(V(T(0, 0))(1− tx)(1− ty)
+ V(T(1, 0))tx(1− ty) + V(T(0, 1))(1− tx)ty
+ V(T(1, 1))txty)

(6)

3. EXPERIMENTAL RESULTS

We compare our interpolation method with the matrix co-

efficients linear interpolation, whose expression is T(t) =
(1 − t)T(0) + tT(1), following the notation in Section 2.

This is due to the reason that both of them can be used for

arbitrary 2 × 2 symmetric tensors, whereas the interpolation

methods based on Riemannian manifolds are restricted to pos-

itive semidefinite tensors. In Figure 2, we can observe the

interpolation between two tensors and the evolution of some

of the tensor characteristics, namely λ1, λ2, θ, its trace and

determinant and its fractional anisotropy FA. θ and FA are

multiplied by a factor of 20 and 10 respectively to be better

appreciated. Tensors are visualized using ellipses whose axes

are scaled by the eigenvalues, and the major axis is rotated

an angle θ. They are colored by the FA. If we compare the

matrix linear interpolation with our method, we can see that

in the former the determinant is not convex, whereas the lat-

ter is. The trace is linear in both cases. In addition, in our

method the eigenvalues and θ are guaranteed to be linearly

interpolated, which does not happen in the matrix coefficients

method and can be seen where t is small. Also, the FA has

a local minimum around t = 0.1, which is not present in our

method.

We compare the results of using both methods for bi-

linear interpolation between the tensors at the corners of a

square. They are shown in Figure 3. As before, the tensors
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Fig. 2. Result of the interpolation between two tensors V(T(0)) = (5, 1, 0) (left) and V(T(1)) = (50, 2, 0.25π) (right).

The ellipse color is given by its fractional anisotropy. Using matrix coefficients interpolation: (a) Visualization of the result.

(c) Tensor characteristics. Using our interpolation: (b) Visualization of the result. (d) Tensor characteristics.

are represented with ellipses and they are colored by their FA.

The experiment with matrix coefficient interpolation in Fi-

gure 3(a) shows that transitions between anisotropic tensors

(top left and top right) include tensors more isotropic than

each of them, which is followed by a decrease of the FA. In

contrast, with our interpolation method, shown in Figure 3(b),

smoother transitions both in shape as well as FA are achieved.

Finally, we make an interpolation between a positive def-

inite tensor T(0) and a tensor T(1) with λ2T(1) = −λ2T(0).

The tensor characteristics except the FA are shown in Fig-

ure 4. We can see that our method achieves better results

for the interpolation of the eigenvalues, and consequently for

the tensor determinant. λ2 changes sign in exactly t=0.5 with

our method, whereas with matrix coefficients interpolation it

changes in t=0.74.

4. CONCLUSIONS AND FUTURE WORK

A new interpolation method for 2× 2 symmetric second-rank

tensors was presented. It uses a linear interpolation of the

eigenvalues and the angle between the major eigenvector and

the abscissa axis. This method can be used for tensors whose

eigenvalues can be positive or negative, and preserves positive

semidefiniteness when tensors with nonnegative eigenvalues

are used. The experiments show that the results are better

with our technique than with matrix coefficients linear inter-

polation.

As future lines of work, we are seeking to expand this

method to second-rank tensors in three-dimensional space. Of

the six degrees of freedom in a 3× 3 symmetric second-rank

tensor, three of them would be its eigenvalues and the oth-

ers would be devoted to the representation of the eigenvectors

spatial location. We also want to apply this technique to medi-

cal tensor image processing, in particular to white matter trac-

tography, where the good rotation qualities of this technique

might help following the direction of the nervous fiber tracts.

Strain tensor imaging, where eigenvalues are not guaranteed

to be positive, is another interesting field for this technique.
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Fig. 3. Result of bilinear interpolation between the tensors in the corners: V(T(0, 0)) = (1, 1, 0) (bottom left), V(T(1, 0)) =
(2, 0.8, 0) (bottom right), V(T(0, 1)) = (2, 0.8, 0.75π) (top left) and V(T(1, 1)) = (4, 0.3, 0.25π) (top right). The ellipse

color is given by the tensor fractional anisotropy. (a) Using matrix coefficients interpolation. (b) Using our interpolation.
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Fig. 4. Tensor characteristics of the interpolation between V(T(0)) = (5, 1, 0) (left) and V(T(1)) = (10,−1,−0.25π) (right).

(a) Using matrix coefficients interpolation. (b) Using our interpolation.
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